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Weakly Nonlinear Conductivity of Random 
Composites: A Series Expansion Approach 

Ohad Levy 1" 2 and David J. Bergman I 

Received June 14, 1995 

We present a series expansion calculation of the bulk effective coefficient of 
weakly nonlinear behavior in some continuum composite conductors and in 
simple cubic random resistor networks. The expansion is in powers of the 
relative difference between the linear Ohmic conductivities of the components. It 
is carried up to third order for an independent random bond network and a 
diagrammatic scheme is used to aid in implementing the calculation. For con- 
tinuum composites, only the first term of the expansion can be calculated 
explicitly without detailed information about the microgeometry. Such informa- 
tion is difficult to acquire and even more difficult to exploit. 

KEY WORDS: Composite materials; nonlinear conductivity; series expan- 
sion. 

1. I N T R O D U C T I O N  

The  p h e n o m e n o n  of  weak ly  non l inea r  electr ical  t r anspor t  in a m a c r o -  
scopical ly  i n h o m o g e n e o u s  or  c o m p o s i t e  m e d i u m  has  a t t r ac ted  increas ing 

a t t en t ion  since 1985 (see ref. 1 for a recent  review). In  par t icular ,  m u c h  
effort has  cen tered  a r o u n d  the p r o b l e m  of  the bu lk  effective weakly  non-  

l inear  response  in pe rco la t ing  m e t a l - i n s u l a t o r  o r  n o r m a l  m e t a l - s u p e r -  
c o n d u c t o r  compos i tes ,  where  the con t ras t  be tween  the proper t ies  o f  the  

two  c o m p o n e n t s  (i.e., the  ra t io  of  conduct iv i t i es )  is infinite. The  cri t ical  

b e h a v i o r  o f  the weak ly  n o n l i n e a r  response  near  pe rco la t ion  was also dis- 
cussed for finite con t ras t  compos i tes .  ~'-" 3~ In  this pape r  we are  conce rned  

wi th  de t e rmin ing  the effective non l inea r  conduc t iv i ty  of  a weak ly  n o n l i n e a r  
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random composite far from the percolation threshold and with a finite con- 
trast between the component properties. Stroud and Hui (4) showed that the 
bulk effective weak nonlinearity coefficient of a composite is proportional 
to the effective resistance fluctuations, 1/f noise, c5"6) in a linear composite 
that has the same linear conductivities and the same microgeometry. It can 
therefore be calculated, to first order in the nonlinearity, from an 
appropriate moment of the local field distribution in such a linear com- 
posite. Based on this perturbation approach, Zeng et aL ~7"8) proposed an 
effective medium theory for the calculation of the effective nonlinear 
response. We present here a different approach, namely an expansion in 
powers of the relative difference between the Ohmic conductivities of the 
components. 

In weakly nonlinear materials the local constitutive relation between 
the electric current density and the electric field is 

where 

J(r) = tr(r) E(r) + b(r) IE(r)l 2 E(r) (1.1) 

b(r) ]E(r)l 2 ~ tr(r) (1.2) 

The nonlinear term is the lowest order correction to Ohmic behavior in 
materials that have a centrosymmetric crystal structure. In a composite 
made of such weakly nonlinear conductors the Ohmic conductivity tr and 
the nonlinearity coefficient b may have different values in each component. 
The composite will exhibit a bulk behavior characterized by bulk effective 
coefficients tr c and be, (1'4) 

<J> =ae<E> +be I<E>I2<E> (1.3) 

where the angular brackets denote a volume average, <E>- -Eo  is the 
externally applied uniform electric field, 

1 IE,(r)[ 2 t" 
ae = - 7 . / d V a ( r )  (1.4) 

IEol 2 I r a  

and 

be=l f dVb(r) IEt(r)14 
IE014 

(1.5) 

E~(r) is the local electric field in a corresponding linear composite of the 
same microgeometry and the same local Ohmic conductivities but with 
b(r) = 0 everywhere. An expression similar to (1.5) was previously obtained 
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for the lowest order nonlinear correction to the bulk effective superfluid 
density in HelI  filled superleak as a function of the local superfluid 
velocity, c9) 

The discrete analog of (1.1) for a two-component random resistor 
network (RRN) is 

I=gV+ b I Vl 2 v (1.6) 

where g is the Ohmic conductivity and b is the nonlinear conductivity coef- 
ficient (g=go, b=bo in one component and g=gl,  b=bl in the second). 
The effective conductivities may be defined by the relation between the 
average current per bond Io and the average voltage per bond Vo, 

Io= ge Vo + be l Vol2 Vo (1.7) 

As in the continuum case, the effective nonlinear conductivity coefficient be 
can be calculated, to first order in the nonlinearity, from the fourth 
moment  of the local voltage distribution in the corresponding linear 
network(4. ~0, ]~) weighted by the local values of b 

be=l~botV~ (1.8) 

which is the discrete analog of (1.5). N is the total number of unit cells in 
the network and the sum is taken over all the bonds of the network. Here 
II= is the voltage drop on the conductor ~ when all the b= vanish and an 
external voltage is applied in the direction of one of the principal axes, such 
that ( I / N ) Z =  V= = 1. This sum may be taken either over all the bonds of 
the network or only over the bonds parallel to the external applied voltage. 
Clearly, be is sensitive to local fluctuations in V which are induced by the 
inhomogeneities of g. Our aim in this paper is to find a more explicit form 
of this dependence by expanding be as a power series in the local Ohmic 
conductance fluctuations. 

2. THE C O N T I N U U M  CASE: NONLINEAR COMPOSITE 
MATERIALS 

The local, Ohmic conductivity of a continuum composite will be 
written as 

a(r) =ao + ~a(r) (2.1) 

where ao is some constant value, most conveniently chosen equal to the 
Ohmic conductivity of one of the components. ~a(r) is the local variation 

822/82/5-6-8 
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of the Ohmic conductivity, which assumes a different value in each compo- 
nent. It can be written as 

6a(r) = ~ Oi(r ) 6ai (2.2) 
i 

where the sum is over all the components and Oi(r) is the characteristic 
function of the component i, equal to 1 inside it and to 0 in the other com- 
ponents. The nonlinear conductivity coefficient can be similarly expressed 
a s  

b(r) = ~ O,(r) b, (2.3) 
i 

It is clear that the effective nonlinear conductivity be of Eq. (1.5) is sensitive 
to local fluctuations in the electric field. These fluctuations are induced by 
the inhomogeneity of the Ohmic conductivity ga(r), since be depends only 
on the Ohmic fields. The explicit form of this dependence can be found by 
expanding b e as a power series in the linear conductivity variations &r(r). 
This expansion can be symbolically written as 

be=  <b(r)> +Obr  -.. (2.4) 

The zeroth-order term of this expansion is simply the volume average of 
b(r) over the whole composite. It would be the exact result in a system 
where a ( r ) = a o = c o n s t  is uniform, in which case also E(r)=Eo will be 
uniform. When a(r) is not a constant, then the Ohmic electric field can also 
be formally expanded as a power series in 6a(r), 

E(r) = E o + c~E(r) + g2E(r) + ... (2.5) 

where Eo is the volume-averaged electric field applied on the composite. 
A similar expansion can be written for the electrostatic potential 

r = r + 6qb(r) + 62r q- ... (2.6) 

where Eo = - V r  and 6"E = - V 6 " r  
In inhomogeneous materials 6a(r)#O m parts of the volume. This 

gives rise to local fluctuations of the electric field and to additional con- 
tributions to the effective nonlinear conductivity coefficient. The first- and 
second-order contributions are 

4 f Eo" 6E(r) (2.7) 6be=-~ dVb(r) E ~  
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and 

62be=l~ I dVb(r)  (Eo.6E(r)) 2 4 f Eo" gZE(r) 
E4o + V J  dVb(r)  Eo (2.8) 

If we assume that the volume-averaged electric field is applied along the 
x-axis and its magnitude is equal to unity, Eo = ~x, then the expansion 
terms of (2.7) and (2.8) can be simplified, 

6be= 4 1 dVb(r)&x.6E(r)  (2.9) 

and 

6"-bo=--~ dVb(r)(~.,..gE(r))2+ dVb(r)  ~x.g2E(r) (2.10) 

To calculate the first-order contribution (2.9), we have to find an explicit 
expression for 6E. This can be done by applying the differential operator 
6 to the divergence equation of the electric current 

V . J = O  (2.11) 

where the Ohmic current is given by J(r )=a(r )E(r ) .  From this we find 

V . 6J = V . ( 6aEo + ao 6E) = 0 (2.12) 

This gives a first-order differential equation for 6E, 

V. 6E = - Eo V. 6a = ~x" V6________~a _ 06a/Ox (2.13) 
O" 0 O" 0 G O 

Substituting (2.2), we get a Poisson equation for the first-order term of the 
electrostatic potential 

V26~ = 1  V.,. Y" Oi(r) gai (2.14) 
f ro  i 

The boundary conditions satisfied by 6q~ are 6q~ = 0 at the two condenser 
plates and 06~/Ox = 0 at the walls. This is just Poisson's equation for the 
potential produced by an electric polarization field, 

d~. P= ~ ~i O,(r)Oai (2.15) 



1332 Levy and Bergman 

Equation (2.14) can be formally solved using a method introduced by 
Bergman. (l'-~ In this approach, each pure component of the composite is 
divided into a large number of small grains and an index p is assigned to 
every grain. A B-function can be defined for every grain, such that Ou(r) is 
1 when r is inside the grain p, and 0 otherwise. The first-order term in the 
expansion of r can be written as a sum of the contributions of all the 
individual grains 

where 

6~ = Y', r 6al, (2.16) 
It 

V2cbl, = 1 V,.Oi,(r) (2.17) 
O" o 

A solution to Eq. (2.17) is given by 

1 I Vi"OI'(r') dV' (2.18) 
~ l , -  4gao. Ir-r'[ 

This solution does not satisfy the boundary conditions of the exact solution 
6~ of Eq. (2.14), but the correction that should be added to it in order to 
repair this fault would be ~(1/V) if both r and r' are well away from the 
surface.(~2) Consequently, this solution can be used to represent ~i, inside 
the grain p and in its vicinity, but not over the entire system. We will use 
it to calculate 6~ within a certain grain p only by evaluating the self-field 
of that grain and the fields produced in it by other grains within a finite 
volume V~, surrounding it. This is the "near-field contribution." The field 
produced by the other, faraway grains can be calculated if the composite 
is assumed to be macroscopically homogeneous. In this case, the actual 
polarization P can be replaced by its average value ( P )  given by 

( P) =4-~o ~ Pi6a i (2.19) 

where p; is the volume fraction of the component i. We will call the field 
produced in this way the "far-field contribution." 

We will now evaluate the near field contribution to the first-order term 
in the expansion of be by substituting the solution (2.18) into Eq. (2.9). 
This gives 

(2.20) 
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Substituting 

b(r) = ~_, Ovb~ (2.21) 
v 

we can now use the near-field restriction p e Vv to perform a partial 
integration over x', which finally gives 

4 f  ~ f  1 O,,(r )(V,.) Ir-r ']  [abe] . . . .  . ~ - - ~  dV d V ' ~  ~,, b,&r,O,(r) ' , z (2.22) 
v pep. , ,  

If we restrict the sums o n / t  and v to a particular component or pair of 
components i and j, then since b~ and &r u are constant, we have to sum 
first over the product of O-functions 

go(r, r') -- ~. ~" O~(r) O~,(r') (2.23) 
v e i  p e V , , j  

The function gij(r, r') is a truncated correlation function, which is equal to 
0 for large separations [r-r ' l .  For separations somewhat smaller than the 
smallest radius of V,,, this function tends to the probability of finding r in 
the component i and r' in the component j. For r = r' it satisfies 

gu(r, r) = pi t~i j  (2.24) 

If the composite system has a rotational symmetry that is either isotropic 
or cubic, and if we choose V~ to be a large, but finite sphere (i.e., much 
larger than the grain v, but much smaller than the composite system itself) 
centered around the grain v, then g#(r, r') will have the same symmetry. In 
this case, the double integral 

l f d v f d V  , gO.(r,r,)V: " 1 . [r_r ,  I (2.25) 

will be independent of the axis along which the double derivative is taken, 
and we can rewrite it as 

1 ~ 1 4it p ;5o  (2.26) l f d v f  dV' g O ( r ' r ' ) ' 3 V - l r - r ' [ -  3 

Using this result in Eq. (2.22), and summing over the phases i and j, we 
find for the near-field contribution 

4 
Fabol  . . . .  

jaoT 
(2.27) 
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The far-field contribution to the electric field 6E at the center of the sphere 
Vv is just the Lorentz local field calculated with zero average field and with 
a polarization given by Eq. (2.19), 

^ 

Therefore, the far-field contribution to Eq. (2.9) is 

(2.29) 

From Eqs. (2.27) and (2.29) we finally get the first-order term in the expan- 
sion of be, 

6b,,=~----~o((~P,b,)(~P,6a,)-~P,bg6a, ) (2.30) 

For the special case of a two-component composite with components 
denoted by 0 and 1 we find the simple result 

4 
6b,, = - - -  p tpo(al - ao)(bl -- bo) (2.31) 

3cr o 

A similar calculation of the second-order contribution 62be is 
impossible without detailed knowledge about the microgeometry of the 
composite. This can be seen if we try to calculate the first term of (2.10). 
Substituting the near-field and far-field contributions to 6E into this expres- 
sion from (2.18) and (2.28), respectively, we find 

1-~ f dVb(r)(Ex" 6E(r)) 2 

, ), 12 60". [ V,.0~,(I ) d V ' +  pi(~ffi 
=---~fdVb(r) V,. 4naoJ [r-r'l ~ao (2.32) 

There are three parts to this expression; one is quadratic in the far-field 
contribution, another is quadratic in the near-field contribution, and the 
third is mixed. The calculation of the far-field term is straightforward. It 
gives 

= (2.33) 
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The mixed term includes an integral that is identical to the one obtained 
in the calculation of the first order-term. It can be solved by the same 
method, for a system of an isotropic or cubic rotational symmetry, 

8 ( ~ .  ) 1  f ~_~n' ~ 1 
p i c k e r  i dV ~ bv6cruOv(r) O~(r')V~. [r-r'] 

0"~) v l* ~ v,. 

=--~(~p,6a,)(~pgb,6a,) (2.34) 

The near-field term cannot be calculated in the same way. After substitu- 
tion of Eq. (2.21) and the use of the near-field restriction p E Vv to perform 
a partial integration over x', we obtain 

t/_ 6~,, V ~'- l_~ ; dV b(r) \~  4__~ao .,. ~ Vi,-O#(r'>lr_r,] dV' / 

12f  ( ~  " I r~r ' l ) ' -  =-~ dV~bv dV' ~ Ov(r) O~,(r')6a~,V-.,. (2.35) 
v , u ~ V , ,  

Inside the triple integral there appears a three-point correlation function 

Or(r) ~. O~,(r') ~ O;.(r") (2.36) 
p E V,. A t  V,. 

In contrast with the two-point correlation function gu(r,r') which 
appeared in the first-order term, this function cannot be easily simplified in 
a way similar to (2.24). Therefore, it is impossible to calculate the near-field 
contribution to (2.32), and to the other term of (2.10), without a more 
detailed knowledge of the microstructure. Explicit information is required 
about the three-point correlation function of the composite material. 
Calculation of higher order terms in this expansion involves yet higher 
order correlation functions. 

In summary, the series expansion for the nonlinear conductivity of a 
weakly nonlinear continuum composite with either isotropic or cubic sym- 
metry can be carried out explicitly to first order in the conductivity varia- 
tions. The result to this order is 

,237> 

Calculation of higher order terms requires detailed knowledge of the 
microgeometry of the composite. 
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3. THE DISCRETE CASE: NONLINEAR R A N D O M  
RESISTOR N E T W O R K S  

The series expansion approach introduced in the previous section can 
be applied to random resistor networks (RRN). These networks provide 
the simplest type of  model for a randomly inhomogeneous conductor.  In 
this section, we try to exploit that  simplicity in order to develop a 
systematic expansion for the macroscopic nonlinear conductivity coefficient 
of  a random cubic network of  conductors g~, g2 as a function of  g~/g2 and 
for arbitrary values ofp~,  the probability for any conductor  to be g~. It is 
hoped that the simplicity of  the model will allow us to carry this expansion 
to higher orders than was possible in the more complicated case of  a 
cont inuum composite. 

We consider a three-dimensional cubic R R N  where every bond 
between nearest neighbor sites independently assumes one of  the two 

Vk 

Vrn 

Fig. 1. Schematic representation of the RRN between the parallel plates of an infinite con- 
denser. In this drawing, the distance between the plates is L = 6. The sites m and k are surface 
sites. 
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conductances gl ,g2 with probability Pl,  l - p l ,  respectively. A series 
expansion for the Ohmic conductivity of such an RRN was developed by 
Bergman and Kantor. (is) We adopt their notation and use a method which 
is based on this discrete model to develop a similar expansion for the 
weakly nonlinear conductivity. The network we consider is assumed to fill 
the space between the infinitely large plates of a parallel plate condenser at 
a distance L from each other and is subjected to a potential difference also 
equal to L (see Fig. 1 ). Kirchhoft's equations for the potentials Vj at all the 
lattice sites are given by 

~ g u ( V i -  Vj)=O (3.1) 
J 

where the sum is over all the nearest neighbors to the site i, and where i 
is any internal site (surface sites are excluded--there the potential is either 
0 or L). The conductance go" which is either gl or g2, can be represented 
in the form 

go" = g2eiJ( 1 - uOo. ) (3.2) 

where 

gl  u = l - - - -  
g2 

0o={10 if g u = g ,  
if g q =  g2 

(3.3) 

(3.4) 

and 

{~ if i, j are nearest neighbors (3.5) 
e~j = otherwise 

0 0. is a random bond-variable that is analogous to the characteristic func- 
tion Oi(r) which appears in the continuum composite case. Using this 
representation, Kirchhoff's equations become 

eu( V , -  Vj) = u Y'. eo.Oo.( V~ - Vj) (3.6) 
J J 

Bergrnan and Kantor introduced the discrete lattice Green's function/i  to 
solve this set of equations (is). It is defined by 

Z i / eo(y ~ -  (3.7) r)) = ~. 
i 
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together with the requirement that y~ vanishes when i is a surface site. The 
quantity yt is the discrete analog of the potential created at i by a point 
charge at / .  Using it, Eq. (3.6) and the accompanying boundary condition 
can be transformed into a set of equations for the voltages across the 
individual conductors t~3) 

V~=z~+u~ F~pOpVp (3.8) 

The indices e and fl are bond indices, i.e., 

V , = V u = V ~ - V  J, z ~ - z , - z j ,  0~=-0 o (3.9) 

where zi is the z coordinate of the site i and z~ is equal to unity if the bond 
is parallel to the applied voltage and is zero otherwise. Here 

r ,p-  r,,.jm-r',- rT'- + y7 (3.10) 

is a Hermitian matrix which is the discrete analog of a dipole-dipole inter- 
action between the bonds (U) and (/m) ~13) 

Equation (3.8) can be written more compactly in a symbolic notation 
a s  

V=z+uFOV (3.11) 

This equation can be formally solved and the solution expanded in powers 
of u, 

1 
V= 1 --uFO z=(1 +uFO+u2FOFO+'")z (3.12) 

from which we get 

etc. 

Sv~ = u(rOz) .  = u ~ F~pOpzp 
# 

~2 v~ = u2( FO rOz )~ = u 2 ~. F~p O ~ ~, F p~O ~z~ 

(3.13) 

(3.14) 

The effective weakly nonlinear conductance per bond of the RRN is 
given by Eq. (1.8), 



Weakly Nonlinear Conductivity of Random Composites 1339 

where V~ is given by Eq. (3.8) and N is the total number of unit cells in 
the network. Its expansion as a power series in u can be formally written 
a s  

be= ( b~,) + Obe + OZbe + 63b~... (3.15) 

As in the continuum case, the first term in this expansion (the zeroth-order 
term) is simply the volume average of b~ over the entire system. The next 
three terms in this expansion are 

4 
,~be = ~ ~. b~,z~, ~ V~, (3.16) 

12 4 
r = "N Z b~,z~,(~V~) 2 +-~ ~. b~,z~, 62V~, (3.17) 

ot ~t 

and 

cr a 

The nonlinear conductance of the bonds b, can be written in a way 
analogous to Eq. (2.3), using the characteristic 0-function (3.4), 

b~ = (bl -- b0) 0~ + b0 (3.19) 

With this representation, the expansion terms can be calculated following 
the approach of ref. 13 using three identities satisfied by the matrix 
elements o f / ' :  

y~ r~pzp = o; ~ r . p G  ~ = r~,;  r~ ,  = 1/3 (3.20) 
# p 

In order to calculate the expansion terms in the case of a random network, 
we must average over the distribution of 0,. This averaging is necessary in 
order to get an expansion for the ensemble average of be. We discuss 
infinitely large networks, in which 7~ depends only upon the vector separa- 
tion between the network sites i -  I and /'~p depends only on the vector 
separation of tile bonds ~ and fl and on their relative orientations, and not 
on their absolute locations. Consequently, the ensemble average of each of 
the terms (3.16)-(3.18) also depends only on the orientations and vector 
separations of the bonds and we can omit the sum on one of the bond 
indices, at the same time omitting also the 1IN factor. Thus, in each of the 
above expansion terms we have to evaluate correlation functions of the 
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independent random variables 0~. Each term will include a correlation 
function of the type 

(0~0#0y...) 

For independently distributed bonds, each of these correlation functions 
may be decomposed into a sum of J-functions multiplied by polynomials 
of pl ,  e.g., 113) 

(0o5 = P l  

(0o01) = p~ + Pl( 1 -- Pl)Jol (3.21) 

(0o0t 02) =p~ +p~( l  -- Pl)(Jol + Jo2 + J12) +p l (1  -- pl)(1 -- 2Pl)Jo12 

where a symbol such as 8o~ is equal to 1 if the bonds 0,1 are equal, and 
to 0 otherwise. 

Given these considerations, the first-order term (3.16) is 

4u 
~b, =-~ ~ b~z~ ~ F~#OBz p 

a p 

4u 
= - ~ ( b ~ - b o ) ~ z , O , F ~ p O p z p + 4 - - ~ b o ~ z ~ F ~ p O p z p  (3.22) 

~# ~p 

Applying the first relation of (3.20), we find that the second term in this 
sum is equal to 0. The first term includes a second-order correlation of 0- 
functions, which we substitute from (3.21). This gives 

6 b e = 4 u ( b l - b o ) ~ ' . z ~ F ~ , p z t 3 p l ( 1  - pl)J~# 
p 

=4u(b]  - bo)pl(1 -- Pl )  z ~ F ~ z ,  

= 4up](1 -- P l ) (b l  -- bo) (3.23) 

This result is identical to (2.31 ), which was obtained for a two-compo- 
nent continuum composite. 

Using this method, we calculated the first three terms in the expansion 
_ o~ n Every correlation function which appears in this b ~ - ( b ~ , )  - Z , = l a ,  u . 

calculation is multiplied by a set o f / "  matrices of equal or lower order. This 
gives various products o f / "  matrices which have to be evaluated. Many of 
these products are found to vanish due to (3.20). To simplify the calcula- 
tion of the coefficients a, ,  it is useful to characterize each contribution by 
an appropriate graph (see Fig. 2): We assign a vertex to every independent 
bond index 0t, a line segment joining two vertices represents the matrix ele- 
ment/ '~# and the factor z~ is represented by a dangling segment connected 
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Order in u Contributing graphs Total contribution of the graphs 

n= I ~ )  4pt( l-p l)(bt-bo) F0o 

n-2 ~ 4p~(l-p,)(bz-bo~ Foo 

~ 16pt(l'P')(l-2 pt)(l~-bc) Foo2 

12p~( l-pl)[b0+pl(bl-bo)] ~ z 0 Fo~ z, 

n=3 (24[bo+pt(b ~-b~]( l-2pt)+401~ (l-l~)(b~-bo)) 
x p,(l-pO Et ZoFo 3, z] 

64p~(l-p~)(1-6p~+6p~(b~-bo) Fd 

{44( I-2p,)+4( l-p])lp~ I-p,)(b,-bo~ F d 

108p~(l-p0:(b,-bo) Foo ~ zoFo~ z~ 

36[bo+P~(t~-bo)]p~(1-p,)(l-2p~) Foo ~ZoFo~ z~ 

36[bo+p~ (1~ -bo)]p~2(1-pt )~ zoFo~ z, 

4p~(I-p,)(b,-bo~ Foo 

Fig. 2. All nonzero graphs and their contributions to the coefficient of u", 1 ~< n ~< 3, in the 
series for be. 

to the vertex ~. All these graphs are multiconnected, i.e, they cannot  be 
separated into disconnected parts  by removing a single line. This rule 
follows from the fact that  such an isolated line would be associated with a 
single sum of the form of the first relation of (3.20), which vanishes. ~3) 
Another  rule is that any vertex that  has only two lines at tached to it can 
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be ignored, and a line that includes any number of such vertices can be 
represented by a single factor F~p. This follows from the idempotency 
property of the matrix F [the second relation of (3.20)]. 

The first three coefficients are obtained by summing the appropriate 
graphs from Fig. 2. The first-order term includes a single contribution 
which was explicitly calculated above. To calculate the second- and third- 
order terms, we need to evaluate non trivial sums involving matrix 
elements of F. The quadratic sum which appears in the second-order term 
is the discrete analog of the three-point correlation function integral, which 
we were unable to calculate in the continuum case. The third-order term 
includes, in addition to such terms, also a cubic sum which is the discrete 
analog of the four-point correlation function integral. Due to the simple 
geometry of the cubic RRN model, these sums can be evaluated numeri- 
cally using series expansions for the matrix elements F~p, developed in ref. 
13. The results obtained are 

z ~ F ; p z ~  = 0.1648 + 10-4, y ' .  3 _ " _ ~ F ~ / j ~ ,  = 0.03422 _+ 10-5 (3.24) 
ct  ~t 

The expansion presented here can in principle be improved by 
calculating more terms, although, beyond third order the number of graphs 
proliferates to such an extent that it becomes very difficult to keep track of 
them all. 

4. D I S C U S S I O N  

In the preceding sections we presented a series expansion approach to 
the calculation of the nonlinear conductivity coefficient b,, of weakly non- 
linear composites. An effective medium theory was previously devised to 
deal with this problem/7' 8~ Both of these methods are based on a perturba- 
tion calculation to first order in the nonlinearity, ~4~ which gives b,, as the 
fourth moment of the local field distribution in a linear composite with the 
same Ohmic conductivities and the same microgeometry. They are thus 
both valid to first order in the nonlinearity coefficients of the components. 
The effective medium theory is a one-shot approximation which is quite 
poor in high contrast composites far from the dilute limitJ 3~ By contrast, 
the approach presented here is a systematic expansion that can in principle 
be improved by calculating more terms in the power series. 

The calculation of the first term in this expansion does not require any 
specific information about the microstructure of the material other than 
overall isotropy (or cubic symmetry) and the values of component volume 
fractions. However, the calculation of additional terms requires detailed 
information about the microstructure. The information needed is of a more 
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complicated nature the further we proceed in the expansion. This 
microscopic information appears in the calculation in the form of multi- 
point microgeometric correlation functions. Thus, a knowledge of the 
three-point correlation function is needed for the calculation of the second- 
order term, the four-point correlation function is needed for the third-order 
term, and so on. This information is usually not available for continuum 
composites, but can, in principle, be extracted from micrographs and be 
used in carrying the expansion to higher order. 

The independent-bond, simple cubic, random resistor network is a 
simple model on which higher order terms of this expansion can be 
calculated explicitly: The correlation functions can be evaluated in any 
order, and the expansion coefficients can then be calculated numerically 
using the discrete dipole-dipole interaction matrix F. The development of 
the expansion for the weakly nonlinear conductivity coefficient of such a 
network was presented in Section 3 and its first three terms were 
calculated. The calculation of higher order terms may prove cumbersome, 
although it should be quite straightforward. 
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